On curvature and the bilinear multiplier problem

نویسندگان

  • S. ZUBIN GAUTAM
  • S. Z. GAUTAM
چکیده

We provide sufficient normal curvature conditions on the boundary of a domain D ⊂ R to guarantee unboundedness of the bilinear Fourier multiplier operator TD with symbol χD outside the local L 2 setting, i.e. from L1 (R) × L2 (R) → L ′ 3 (R) with P 1 pj = 1 and pj < 2 for some j. In particular, these curvature conditions are satisfied by any domain D that is locally strictly convex at a single boundary point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bilinear Multiplier Problem for Strictly Convex Compact Sets

We study the question whether characteristic functions of strictly convex compact sets with smooth boundaries in R are L × L → L bounded bilinear Fourier multiplier operators on R × R. When n ≥ 2 we answer this question in the negative outside the local L case, i.e., when 1/p + 1/q = 1/r and 2 ≤ p, q, r′ <∞ fails. Our proof is based on a suitable adaptation of the Kakeya type construction emplo...

متن کامل

The Bilinear Multiplier Problem for the Disc

We present the main ideas of the proof of the following result: The characteristic function of the unit disc in R is the symbol of a bounded bilinear multiplier operator from L1(R) × L2(R) into L(R) when 2 ≤ p1, p2 < ∞ and 1 < p = p1p2 p1+p2 ≤ 2.

متن کامل

The Disc as a Bilinear Multiplier

A classical theorem of C. Fefferman [3] says that the characteristic function of the unit disc is not a Fourier multiplier on L(R) unless p = 2. In this article we obtain a result that brings a contrast with the previous theorem. We show that the characteristic function of the unit disc in R is the Fourier multiplier of a bounded bilinear operator from L1(R) × L2(R) into L(R), when 2 ≤ p1, p2 <...

متن کامل

The Marcinkiewicz Multiplier Condition for Bilinear Operators

This article is concerned with the question of whether Marcinkiewicz multipliers on R2n give rise to bilinear multipliers on R×R. We show that this is not always the case. Moreover, we find necessary and sufficient conditions for such bilinear multipliers to be bounded. These conditions in particular imply that a slight logarithmic modification of the Marcinkiewicz condition gives multipliers f...

متن کامل

The bilinear Bochner-Riesz problem

Motivated by the problem of spherical summability of products of Fourier series, we study the boundedness of the bilinear Bochner-Riesz multipliers (1 − |ξ| − |η|)+ and we make some advances in this investigation. We obtain an optimal result concerning the boundedness of these means from L × L into L with minimal smoothness, i.e., any δ > 0, and we obtain estimates for other pairs of spaces for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009